1,574 research outputs found

    Content Recommendation by Analyzing User Behavior in Online Health Communities

    Get PDF
    Online health communities (OHCs) are the platforms for patients and their care-givers to search and share health-related information, and have attracted a vast amount of users in recent years. However, health consumers are easily overwhelmed by the overloaded information in OHCs, which makes it inefficient for users to find contents of their interest. This study proposes a framework for content recommendation by analyzing user activities in OHCs that utilizes social network analysis and text mining technology. We model usersā€™ activities by constructing user behavior networks that capture implicit interactions of users, based on which closely related users are detected and user similarities are calculated. Text analysis are performed using topic model to select the threads for final content recommendation. Based on the data collected from a famous Chinese OHCs, we expect that our model could achieve promising results

    ISAR Autofocus Imaging Algorithm for Maneuvering Targets Based on Phase Retrieval and Gabor Wavelet Transform

    Get PDF
    The imaging issue of a rotating maneuvering target with a large angle and a high translational speed has been a challenging problem in the area of inverse synthetic aperture radar (ISAR) autofocus imaging, in particular when the target has both radial and angular accelerations. In this paper, on the basis of the phase retrieval algorithm and the Gabor wavelet transform (GWT), we propose a new method for phase error correction. The approach first performs the range compression on ISAR raw data to obtain range profiles, and then carries out the GWT transform as the time-frequency analysis tool for the rotational motion compensation (RMC) requirement. The time-varying terms, caused by rotational motion in the Doppler frequency shift, are able to be eliminated at the selected time frame. Furthermore, the processed backscattered signal is transformed to the one in the frequency domain while applying the phase retrieval to run the translational motion compensation (TMC). Phase retrieval plays an important role in range tracking, because the ISAR echo module is not affected by both radial velocity and the acceleration of the target. Finally, after the removal of both the rotational and translational motion errors, the time-invariant Doppler shift is generated, and radar returned signals from the same scatterer are always kept in the same range cell. Therefore, the unwanted motion effects can be removed by applying this approach to have an autofocused ISAR image of the maneuvering target. Furthermore, the method does not need to estimate any motion parameters of the maneuvering target, which has proven to be very effective for an ideal rangeā€“Doppler processing. Experimental and simulation results verify the feasibility of this approach

    Design Space Exploration of Neural Network Activation Function Circuits

    Full text link
    The widespread application of artificial neural networks has prompted researchers to experiment with FPGA and customized ASIC designs to speed up their computation. These implementation efforts have generally focused on weight multiplication and signal summation operations, and less on activation functions used in these applications. Yet, efficient hardware implementations of nonlinear activation functions like Exponential Linear Units (ELU), Scaled Exponential Linear Units (SELU), and Hyperbolic Tangent (tanh), are central to designing effective neural network accelerators, since these functions require lots of resources. In this paper, we explore efficient hardware implementations of activation functions using purely combinational circuits, with a focus on two widely used nonlinear activation functions, i.e., SELU and tanh. Our experiments demonstrate that neural networks are generally insensitive to the precision of the activation function. The results also prove that the proposed combinational circuit-based approach is very efficient in terms of speed and area, with negligible accuracy loss on the MNIST, CIFAR-10 and IMAGENET benchmarks. Synopsys Design Compiler synthesis results show that circuit designs for tanh and SELU can save between 3.13-7.69 and 4.45-8:45 area compared to the LUT/memory-based implementations, and can operate at 5.14GHz and 4.52GHz using the 28nm SVT library, respectively. The implementation is available at: https://github.com/ThomasMrY/ActivationFunctionDemo.Comment: 5 pages, 5 figures, 16 conferenc

    A Method for Learning a Petri Net Model Based on Region Theory

    Get PDF
    The deployment of robots in real life applications is growing. For better control and analysis of robots, modeling and learning are the hot topics in the field. This paper proposes a method for learning a Petri net model from the limited attempts of robots. The method can supplement the information getting from robot system and then derive an accurate Petri net based on region theory accordingly. We take the building block world as an example to illustrate the presented method and prove the rationality of the method by two theorems. Moreover, the method described in this paper has been implemented by a program and tested on a set of examples. The results of experiments show that our algorithm is feasible and effective
    • ā€¦
    corecore